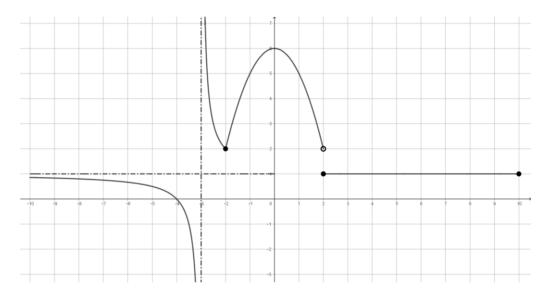


FACULTAD DE CIENCIAS PROGRAMA DE CIENCIAS BÁSICAS EVALUACIÓN DE SEGUIMIENTO

Código	FDE 097
Versión	01
Fecha	2010-01-27

	Asignatura: Cálculo Diferencial- Jornada 2	Código: CDX 24	NOTA
Docente: _		Fecha: octubre 6 de 2017	
Nombre: _		Carné:	

Instrucciones:


Escriba su nombre completo y su número de carné en la parte superior de la hoja.

Los puntos serán evaluados de acuerdo a su procedimiento.

Para este parcial no se permite el uso de celulares, calculadoras, ni fichas.

La prueba está diseñada para una duración de máximo dos horas (2:00)

1. (1.5 puntos) Responda las preguntas 1.1 a 1.6 de acuerdo con el gráfico que se presenta a continuación.

1.1. (0.25) La función correspondiente al gráfico es:

a.
$$f(x) = \begin{cases} \frac{1}{x+3} + 1; & si \quad x < -2 \\ -x^2 + 6; & si \quad -2 < x < 2 \\ 1; & si \quad x > 2 \end{cases}$$

b.
$$f(x) = \begin{cases} \ln(x) - 1; si \ x < -1 \\ \frac{-1}{x} - 1; \ si \ -1 < x < 0 \\ \frac{1}{x} + 1; \ si \ x > 0 \end{cases}$$

c.
$$f(x) = \begin{cases} \frac{1}{x+3} + 1; & si \quad x < -2 \\ -x^2 + 6; & si \quad -2 \le x < 2 \\ 1; & si \quad 2 \le x \le 10 \end{cases}$$

FACULTAD DE CIENCIAS PROGRAMA DE CIENCIAS BÁSICAS **EVALUACIÓN DE SEGUIMIENTO**

Código	FDE 097
Versión	01
Fecha	2010-01-27

d.
$$f(x) = \begin{cases} (x-1)^2 - 2; si \ x < -1 \\ \frac{-1}{x+1} - 1; si - 1 < x < 0 \\ e^{-x}; si \ x > 0 \end{cases}$$

- 1.2. (0.25) El dominio y el rango de la función son, respectivamente
 - a. Dominio: $\{x/x \in (-\infty, \infty)\}\$ y Rango: $\{y/y \in (-1, \infty)\}\$
 - b. *Dominio*: $\{x/x \in (-\infty, -1) \cup (-1, 0) \cup (0, \infty)\}$ y *Rango*: $\{y/y \in [-1, \infty)\}$
 - c. *Dominio*: $\{x/x \in (-\infty, -3) \cup (-3, 10]\}\$ y *Rango*: $\{y/y \in (-\infty, 1] \cup [2, \infty)\}\$
 - d. *Dominio*: $\{x/x \in (-\infty, -3) \cup (-3, 10)\}\$ y *Rango*: $\{y/y \in (-\infty, 1] \cup [2, \infty)\}$
- 1.3. (0.25) De las afirmaciones que se presentan sólo una es falsa, indique cuál
 - a. La recta y=1, es asíntota horizontal para el gráfico de la función porque $\lim_{x\to -\infty} f(x)=1$

 - b. $\lim_{x\to 2} f(x)$ existe, porque $\lim_{x\to 2^-} f(x) = \lim_{x\to 2^+} f(x) = 1$ c. $\lim_{x\to -2} f(x) = 2$, porque $\lim_{x\to -2^-} f(x) = \lim_{x\to -2^+} f(x) = 2$ d. La recta x=-3 es asíntota vertical para el gráfico de la función, porque $\lim_{x\to -3^-} f(x) = -\infty$ y $\lim_{x \to -3^+} f(x) = \infty$
- 1.4. (0.25) El gráfico de la función es discontinuo en x=2. ¿Cuál cree usted que sea la razón de esta discontinuidad?
 - a. $\lim_{x\to 2} f(x)$ no existe
 - b. $\lim_{x \to 2} \bar{f}(x) \neq 2$
 - c. $2 \notin dom f$
 - $d. \quad \lim_{x \to 2^+} f(x) \neq 2$
- 1.5. (0.25) La función no es derivable en x = -2, porque
 - a. La función es discontinua en x=-2
 - b. El gráfico de la función tiene un pico en el punto (-2,2)
 - c. El gráfico de la función tiene una tangente vertical en el punto (-2, f(-2))
 - d. $\lim_{x \to -2} f(x)$ no existe
- 1.6. (0.25) Con respecto a la derivada en el punto (0, f(0)), puede afirmarse que.
 - a. Existe, porque en este punto la función es continua.
 - b. No existe, porque en (0, f(0)), el gráfico de la función presenta un pico.
 - c. Existe, porque en este punto la función es continua y además $\lim_{h\to 0} \frac{f(0+h)-f(0)}{h}$ existe.
 - d. No existe, porque en este punto la recta tangente es horizontal y, su pendiente es cero.

FACULTAD DE CIENCIAS PROGRAMA DE CIENCIAS BÁSICAS EVALUACIÓN DE SEGUIMIENTO

Código	FDE 097
Versión	01
Fecha	2010-01-27

- 2. **(1.3 puntos)** Considérense las funciones $f(x) = \frac{x^2 + x 2}{x 5}$ y $g(x) = \frac{x 3}{\sqrt{x 2} 1}$. De acuerdo con esta función, encontrar:
 - a. (Valor 0.4) Dominio de la función Dom(g-f)(x)
 - b. (Valor 0.4) $\lim_{x\to 3} g(x)$
 - c. (Valor 0.3) $\lim_{x \to \infty} g(x)$
 - d. (Valor 0.2) Analizar la continuidad de f(x), en x = 5
- 3. **(1.2 puntos)** Dada la función $f(x) = x^2 + 2x 1$
 - a. (Valor 0.7) Encuentre una expresión general para la pendiente de todas las rectas tangentes a f(x) haciendo uso de la fórmula para la pendiente $m = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$
 - b. (Valor 0.2) Determine la pendiente de la recta tangente en x=2
 - c. (Valor 0.3) Hallar la ecuación de la recta tangente a f(x) en el punto P(2,7)
- 4. (1.0 puntos) Determine la derivada de las siguientes funciones.

a. (Valor 0.5) Sea
$$f(x) = tan^2x \cdot \cos(x^2 + 2x)$$

b. (Valor 0.5) Sea
$$f(x) = \frac{\sqrt{2x^2-3}}{(2x^3-5x)^4}$$

Nota:

Si
$$y = A(x)B(x)$$
, entonces $y' = A(x)B'(x) + B(x)A'(x)$

Si
$$y = \frac{A(x)}{B(x)}$$
 entonces $y' = \frac{B(x)A'(x) - A(x)B'(x)}{[B(x)]^2}$