

FUNCIONES 1a 1 FUNCIONES INVERSAS

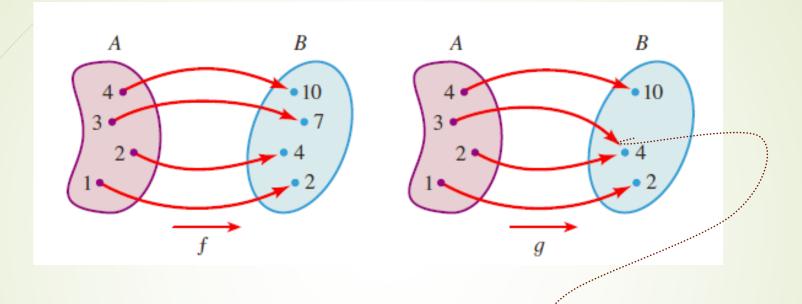
**MISVALORES
Entrega
Transparencia
Simplicidad
y Persistencia

**MIVISIÓN: Tender a ser un ser humano completo mediante la entrega, la transparencia, la simplicidad y la persistencia.

*MI MISIÓN: Entrega a la Voluntad Suprema.

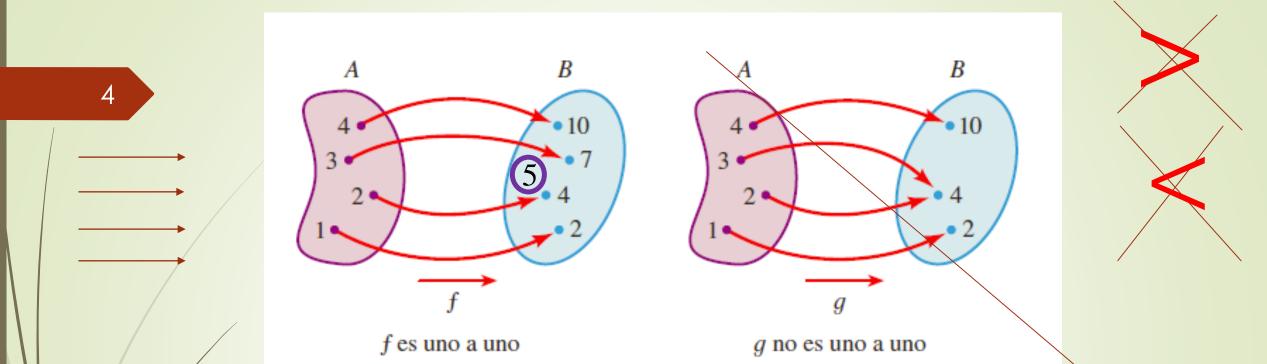
Servir a las personas.

2/21/2018 2/21/2018



Aunque ambas son funciones, note que en g, a 2 elementos del dominio le corresponde uno solo del rango B:

- a 3 le toca 4
- a 2 le toca 4

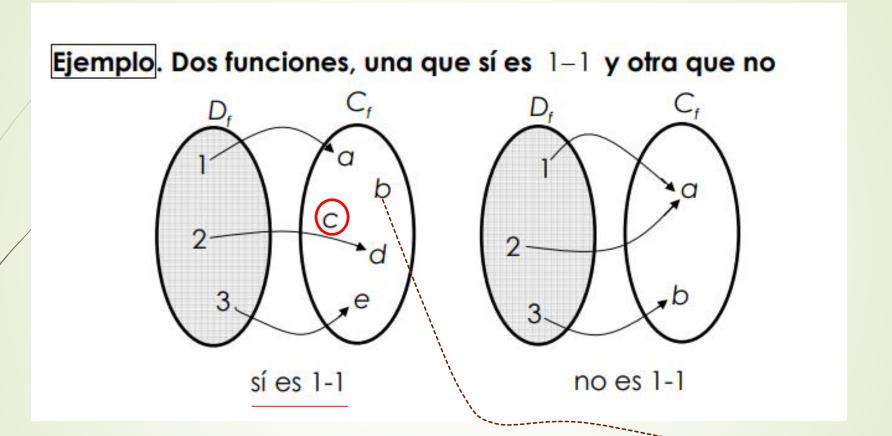


DEFINICIÓN DE UNA FUNCIÓN UNO A UNO La función 1 a 1 es inyectiva.

Una función con dominio A se denomina función uno a uno si no hay dos elementos de A que tengan la misma imagen, esto es,

$$f(x_1) \neq f(x_2)$$
 siempre que $x_1 \neq x_2$

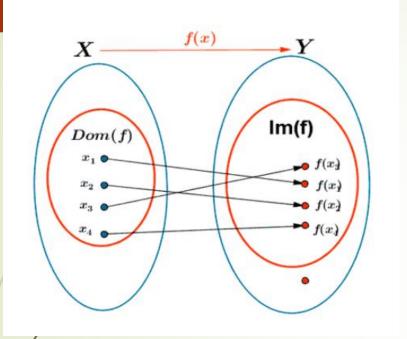
Dos x no tienen la misma y. A todo elemento de A le corresponde un solo elemento diferente de B. A cada uno le toca uno diferente. Es uno a uno.

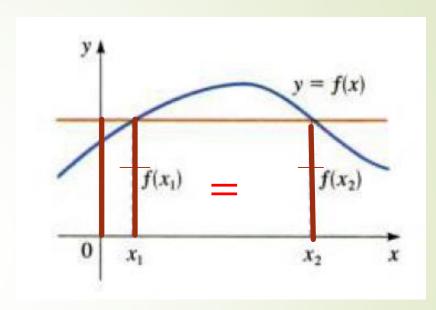


Note que en el rango pueden haber elementos sin correspondencia con el dominio De la Cf no es función.

Prueba de la línea horizontal para función 1 a 1

6





La Función no 1 a 1

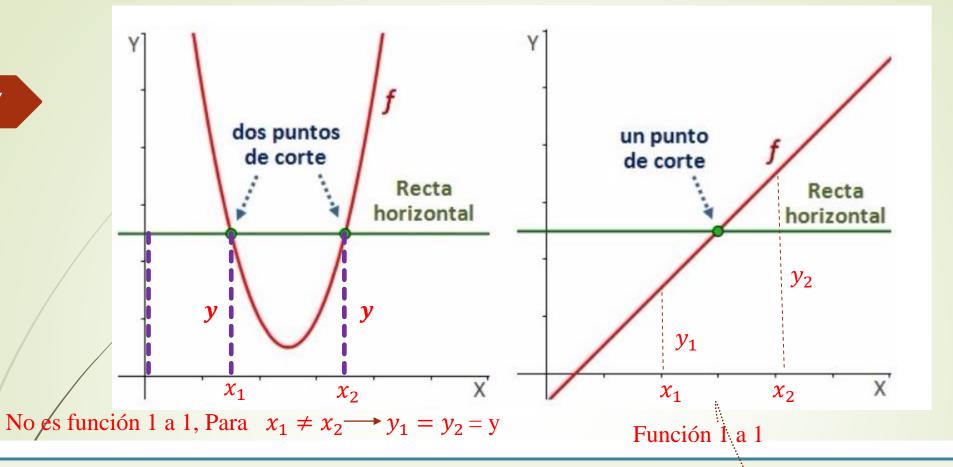
Función 1 a 1

http://calculo.cc/temas/temas_bachillerato/primero_ciencias_sociales/funciones/teoria/inyectiva.html

Si una recta horizontal cruza la gráfica de f en más de un punto, entonces vemos de la Figura 2 que hay números $x_1 \neq x_2$ tales que $f(x_1) = f(x_2)$. Esto significa que f no es uno a uno. Por lo tanto, tenemos el siguiente método geométrico para determinar si una función es uno a uno. A dos x diferentes no le pueden tocar el mismo y.

ELABORO MSC. EFREN GIRALDO T.

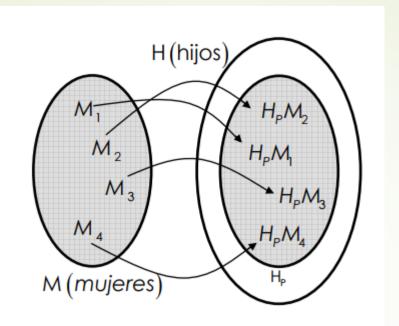
2/21/2018



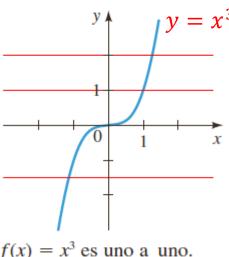
PRUEBA DE LA RECTA HORIZONTAL

Una función es uno a uno si y sólo si no hay una recta horizontal que cruce su gráfica más de una vez. Para $x_1 \neq x_2 \longrightarrow y_1 \neq y_2$

2/21/2018



Sea M el conjunto de mujeres con hijos, y f la función que asocia a cada mujer con su hijo primogénito. Es una función 1 a 1.



 $f(x) = x^3$ es uno a uno.

EJEMPLO 1 Determinar si una función es uno a uno

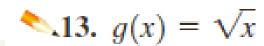
¿La función $f(x) = x^3$ es uno a uno?

SOLUCIÓN 1 Si $x_1 \neq x_2$, entonces $x_1^3 \neq x_2^3$ (dos números diferentes no pueden tener el mismo cubo). Por lo tanto, $f(x) = x^3$ es uno a uno.

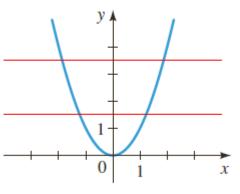
SOLUCIÓN 2 De la Figura 3 vemos que no hay recta horizontal que cruce la gráfica de $f(x) = x^3$ más de una vez. Por lo tanto, por la Prueba de la Recta Horizontal, f es uno a uno.

◆ AHORA INTENTE HACER EL EJERCICIO 13

Determine si la función es uno a uno. $13. g(x) = \sqrt{x}$



2/21/2018



 $f(x) = x^2$ no es uno a uno.

EJEMPLO 2 Determinar si una función es uno a uno

¿La función $g(x) = x^2$ es uno a uno?

SOLUCIÓN 1 Esta función no es uno a uno porque, por ejemplo,

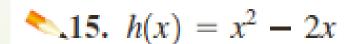
$$g(1) = 1$$
 y $g(-1) = 1$

por lo cual 1 y −1 tienen la misma imagen.

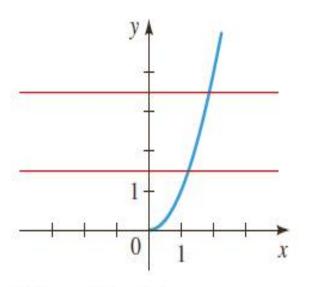
SOLUCIÓN 2 De la Figura 4 vemos que hay rectas horizontales que cruzan la gráfica de g más de una vez. Por lo tanto, por la Prueba de la Recta Horizontal, g no es uno a uno.

► AHORA INTENTE HACER EL EJERCICIO 15

Determine si la función es uno a uno.



2/21/2018



 $f(x) = x^2 (x \ge 0)$ es uno a uno.

Aun cuando la función g del Ejemplo no es uno a uno, es posible restringir su dominio de manera que la función resultante sea uno a uno. De hecho, definimos

$$h(x) = x^2 \qquad x \ge 0$$

entonces h es uno a uno, como se puede ver de la Figura 5 y de la Prueba de la Recta Horizontal.

Función inversa f^{-1}

Dada una función $f: X \to Y$, estudiaremos el siguiente problema: si conocemos el "valor de salida" $y \in Y$, ¿cómo determinar el "valor de entrada" $x \in X$ para el cual y = f(x)?

La que nos permite responder a este interrogante se llama función inversa de f ó f^{-1} y para poderla definirla, la función f debe cumplir ciertos requisitos.

$$f$$
 f^{-1}

Funciones inversas f^{-1} en el sentido más amplio, son funciones que hacen lo "contrario" la una de otra.

Son como dos personas enemigas: la una hace una cosa y la otra se la desbarata y la deja como estaba al principio.

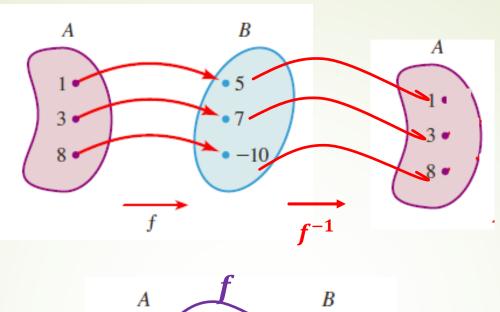
La una coloca un objeto en un sitio y la otra vuelve y lo lleva al sitio original. Al final es como si no se hubiera hecho nada.

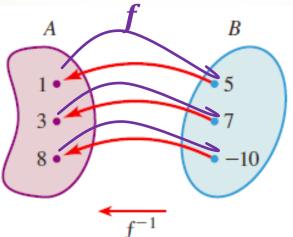
La función inversa es doble función en ambos sentidos

14

- La *inversa* de una función es una regla o fórmula que actúa en la salida de la función y produce la entrada correspondiente.
- Por lo tanto, la inversa "deshace" o invierte lo que la función original ha hecho. No todas las funciones tienen inversas; las que la tienen se llaman *uno a uno*.

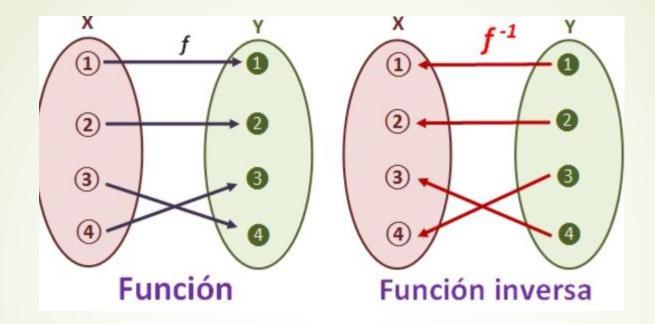
El /requisito para que una función tenga inversa es que primero sea 1 a 1.





f coge A y lo transforma en B y f^{-1} coge B y vuelve a transformar en A. f^{-1} coge el rango de f y lo vuelve a transformar en el dominio. El rango de f es el dominio de f^{-1} .

2/21/2018



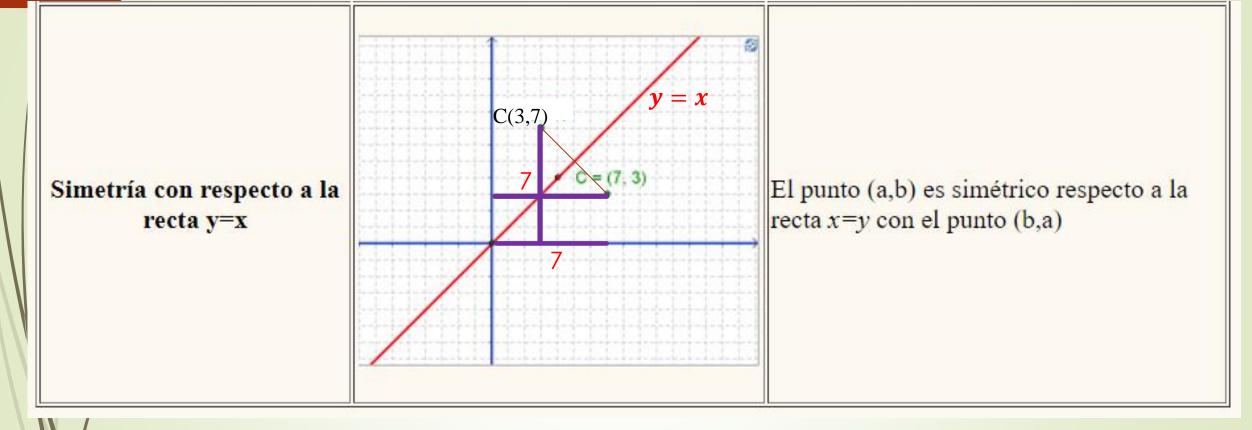
Por definición, la función inversa f^{-1} deshace lo que f hace: si empezamos con x, aplicamos f y luego aplicamos f^{-1} , llegamos otra vez a x, donde empezamos. Análogamente, f deshace lo que f^{-1} hace. En general, cualquier función que invierte el efecto de f en esta forma debe ser la inversa de f.

2/21/2018

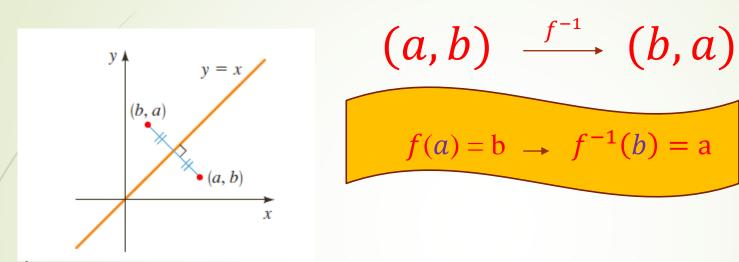
- Lo que quiere decir que la función original f toma los x y los convierte en y, y f^{-1} recoge los y y los convierte en los x.
- $-f^{-1}$ a todo el rango lo convierte en dominio.

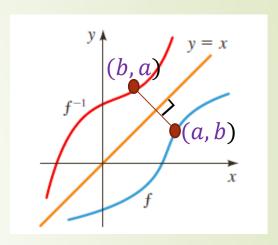
 f^{-1} rango — dominio de f

Simetría respecto a la recta y=x



La simetría con respecto a la recta y = x intercambia las coordenadas: La de x la coloca como y, la de y la coloca como x. En palabras sencillas si una función f(x) tiene inversa $f^{-1}(x)$, un punto de coordenadas (a,b) debe cumplir que $f^{-1}(x)$ lo trasforma en (b,a): invierte las coordenadas.



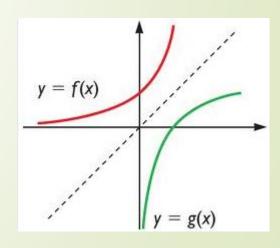


$$f(x) \text{ toma } a \text{ y lo convierte en } b$$

$$f^{-1}(x) \text{ toma } b \text{ y lo convierte en } a$$

$$\downarrow b$$

$$\downarrow f^{-1}$$



f⁻¹ es simétrica respecto a la recta y=x

1.
$$f^{-1}: Y \to X$$
.

- 2. Dominio de f^{-1} = rango de f.
- 3. Rango de f^{-1} = dominio de f. Para un punto de coordenadas (a,b) se cumple Por la definición (1) de función inversa

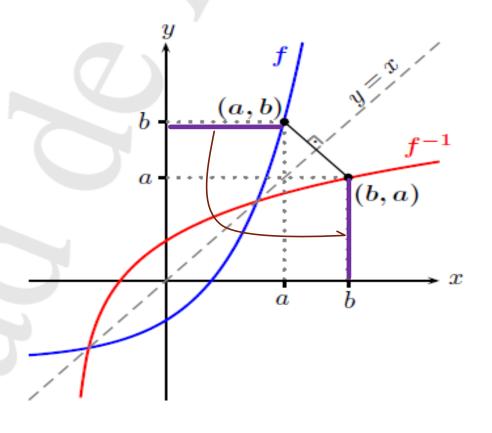
$$f^{-1}(b) = a \iff b = f(a),$$

y por tanto el punto de coordenadas (a, b) pertenece a la gráfica de f si, y sólo si el punto (b, a) pertenece a la gráfica de f^{-1} . Así, la gráfica de f^{-1} es la misma que la de f excepto que los roles de los ejes x e y se cambian.

Observemos que los puntos (a, b) y (b, a) son simétricos respecto a la recta y = x y por tanto las gráficas de f y f^{-1} son simétricas a dicha recta.

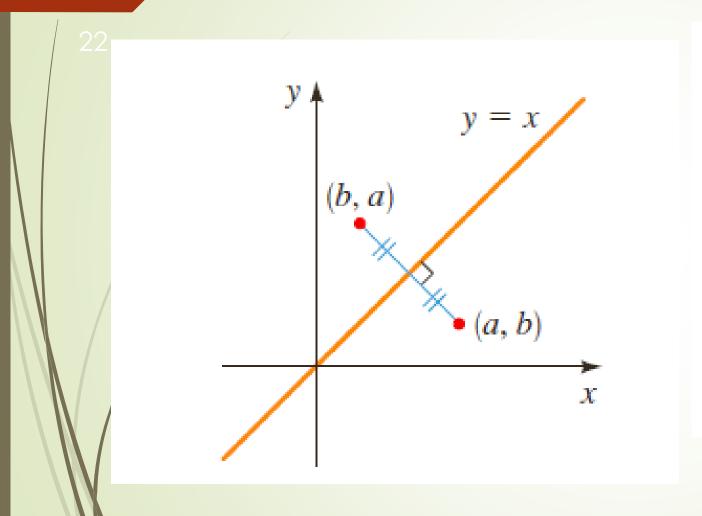
4.
$$f^{-1}(f(x)) = x$$
 para todo $x \in X$

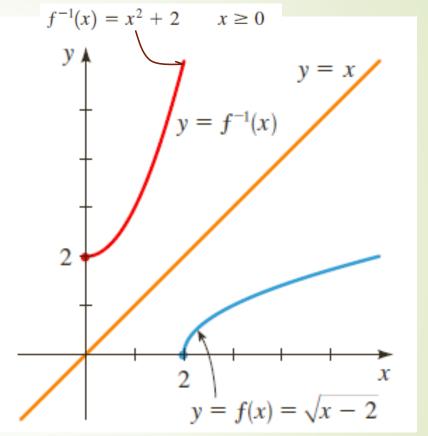
5.
$$f(f^{-1}(y)) = y$$
 para todo $y \in Y$



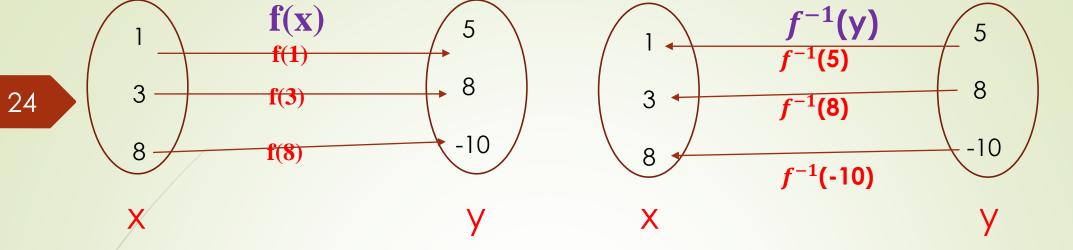
Suponga que dos funciones son inversas. Si (a, b) es un punto en la **gráfica** de la función original, entonces el punto (b, a) debe ser un punto en la gráfica de la función inversa. Las gráficas son *imágenes espejo* una de otra con respecto a la recta y = x

La gráfica de una función, y la gráfica de su inversa, son simétricas con respecto a la recta y = x.





Una función es **simétrica respecto a la recta** *x*=*y*, si al intercambiar la entrada por la salida, obtenemos la misma expresión



$$f(1) = 5$$
, $f(3) = 7$, $f(8) = -10$, $f^{-1}(5) = ?$ $f^{-1}(8) = ?$ $f^{-1}(-10) = ?$

Por definición de la función inversa f^{-1} toma un elemento del rango de f y lo devuelve a dominio.

Por tanto, toma 5 (del rango de f) y convierte en 1 nuevamente. Toma 8 y lo convierte en 3. Toma -10 y lo convierte en 8.

$$f^{-1}(5)=1$$

 $f^{-1}(7)=3$
 $f^{-1}(-10)=8$

ELABORÓ MSc. EFRÉN GIRALDO T.

$$f(f^{-1}(x))=f^{-1}(f(x))=(f\circ f^{-1})(x)=(f^{-1}\circ f)(x)$$

PROPIEDAD DE LA FUNCIÓN INVERSA

Sea f una función uno a uno con dominio A y rango B. La función inversa f^{-1} satisface las siguientes propiedades de cancelación:

$$f^{-1}(f(x)) = x$$
 para toda x en A

$$f(f^{-1}(x)) = x$$
 para toda x en B

Recíprocamente, cualquier función f^{-1} que satisfaga estas ecuaciones es la inversa de f.

Si se evalúa la función inversa $f^{-1}(x)$ con f(x), se vuelven a obtener los elementos del dominio de f(x).

Si se evalúa la función $f(x) \operatorname{con} f^{-1}(x)$ se obtienen también los elementos del dominio de f(x). Pasa exactamente lo mismo.

26

Si aplicamos el método del cajón a la función $f^{-1}(x)$ se entenderá fácilmente como encontrarla.

En realidad es evaluar en $f^{-1}(x)$ la función f(x) y debe dar x.

También es evaluar f en f^{-1} y debe dar x.

$$f^{-1}(x)$$
 $f^{-1}(x)$ $f^{-1}(f(x))$

EJEMPLO Verificar que dos funciones son inversas

Demuestre que $f(x) = x^3$ y $g(x) = x^{1/3}$ son inversas entre sí.

SOLUCIÓN Observe que el dominio y rango de f y de g es \mathbb{R} . Tenemos

$$f(x)=x^3$$
 $g(x)=x^{1/3}=f^{-1}(x)=?$

Si aplicamos el método del cajón o paréntesis a f^{-1} :

$$f^{-1}(x) = x^{1/3} = ()^{1/3} = (x^3)^{1/3} = x^{3/3} = x$$

 $f(f^{-1}(x))$ $f(x) = x^3$ $()^3 = (x^{1/3})^3 = x$

Ahora a f

La ecuación de $f^{-1}(x)$ a partir de f(x)

CÓMO HALLAR LA INVERSA DE UNA FUNCIÓN UNO A UNO

- **1.** Escriba y = f(x).
- 2. Despeje x de esta ecuación en términos de y (si es posible).
- **3.** Intercambie x y y. La ecuación resultante es $y = f^{-1}(x)$.

EJEMPLO Hallar la inversa de una función

Encuentre la inversa de la función f(x) = 3x - 2.

30

EJEMPLO Hallar la inversa de una función

Encuentre la inversa de la función f(x) = 3x - 2.

SOLUCIÓN Primero escribimos y = f(x).

$$y = 3x - 2$$

A continuación despejamos x de esta ecuación.

$$3x = y + 2 \qquad \text{Sume 2}$$

$$x = \frac{y+2}{3}$$
 Divida entre 3

Finalmente, intercambiamos x y y. $y = \frac{x+2}{3}$

Por lo tanto, la función inversa es $f^{-1}(x) = \frac{x+2}{3}$.

EJEMPLO Hallar la inversa de una función

Encuentre la inversa de la función $f(x) = \frac{x^5 - 3}{2}$.

EJEMPLO Hallar la inversa de una función

Encuentre la inversa de la función $f(x) = \frac{x^5 - 3}{2}$.

SOLUCIÓN Primero escribimos $y = (x^5 - 3)/2$ y despejamos x.

$$y = \frac{x^5 - 3}{2}$$
 Ecuación que define la función

$$2y = x^5 - 3$$
 Multiplique por 2

$$x^5 = 2y + 3$$
 Sume 3 (y cambie lados)

$$x = (2y + 3)^{1/5}$$
 Tome raíz quinta de cada lado

A continuación intercambiamos x y y para obtener $y = (2x + 3)^{1/5}$.

$$f^{-1}(x) = (2x + 3)^{1/5}$$
.

jη

33

Ejemplo 2: Calcular la siguiente función inversa:

$$x = \frac{2y+3}{y-1}$$

1º. Hacemos el cambio de y por x:

$$x(y-1)=2y+3$$

$$xy-x=2y+3$$

$$xy-2y=x+3$$

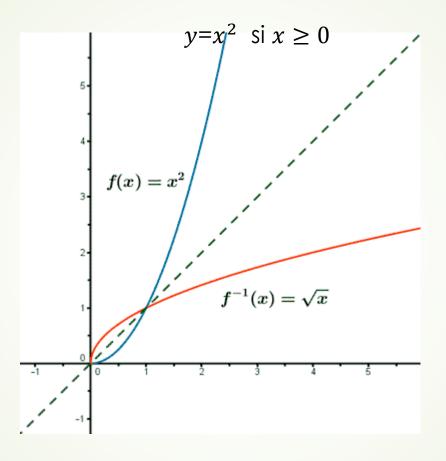
$$y(x-2)=x+3$$

$$y=\frac{x+3}{x-2}$$

2º. Despejamos la y:

$$f^{-1}(x) = \frac{x+3}{x-2} = y$$

3º. Finalmente, la función inversa es:



http://calculo.cc/temas/temas bachillerato/primero ciencias sociales/funciones/teoria/inversa.html

35

Haga este ejercicio

Encuentre la función inversa de f.

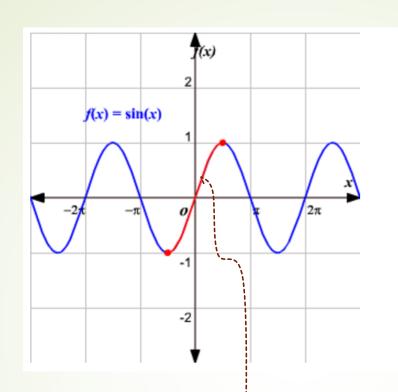
27.
$$f(x) = 2x - 5$$
; $g(x) = \frac{x + 5}{2}$

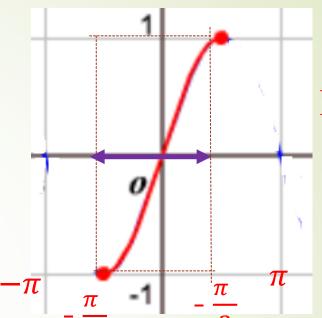
37.
$$f(x) = 2x + 1$$

38.
$$f(x) = 6 - x$$

FUNCIONES TRIGONOMÉTRICAS. FUNCIONES TRIGONOMÉTRICAS 1 a 1

36





D: $(-\frac{\pi}{2}, \frac{\pi}{2})$,

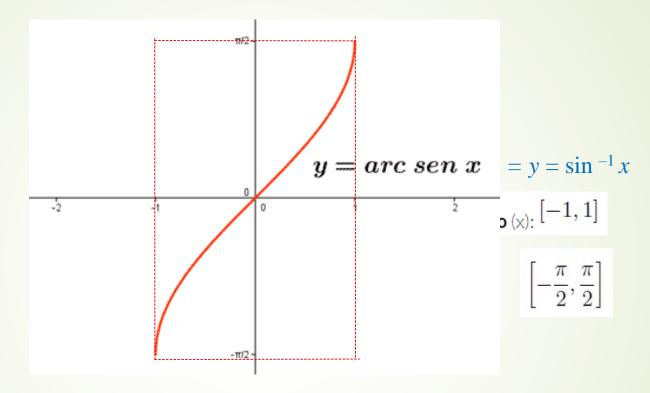
R: (-1, 1)

Las <u>funciones trigonométricas</u> son todas <u>funciones periódicas</u>. Así, las gráficas de ninguna de ellas pasa la prueba de la <u>línea horizontal</u> y por tanto no son <u>1-a-1</u>. Esto significa que ninguna de ellas tiene una inversa a menos que el <u>dominio</u> de cada una, esté restringido para hacer de ellas funciones 1 a 1.

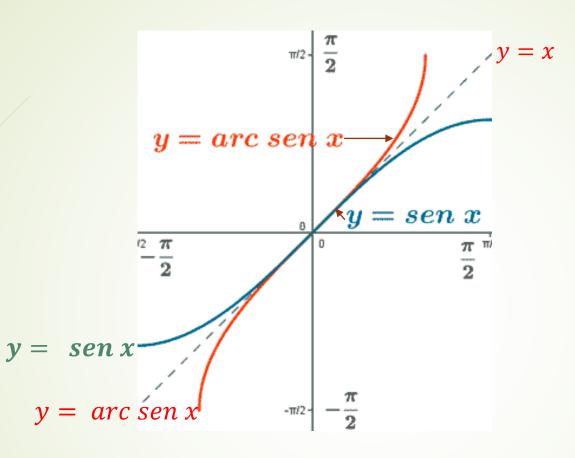
Si restringimos el dominio de $f(x) = \sin x$ a $(-\frac{\pi}{2}, \frac{\pi}{2})$, hemos hecho la función 1a 1.

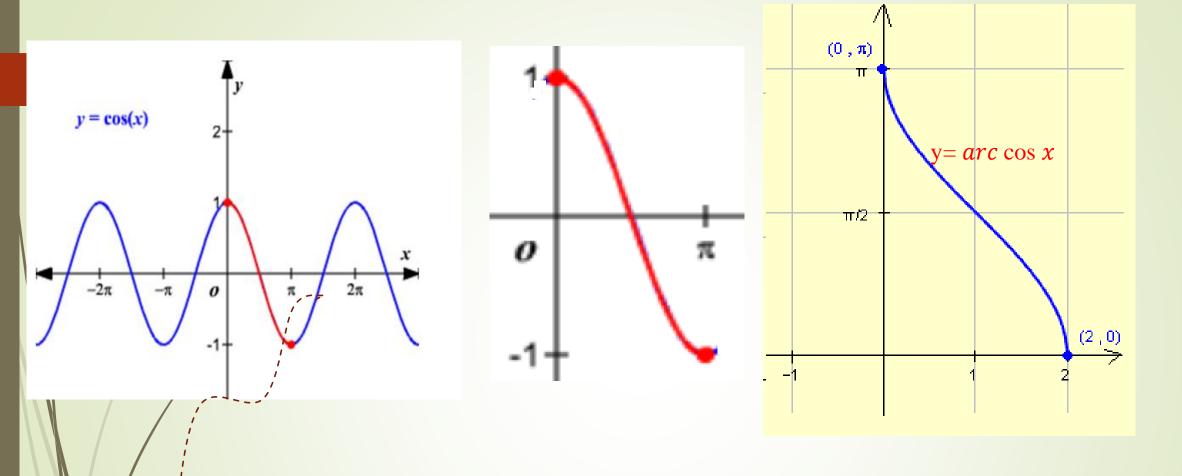
E Dominio es $(-\frac{\pi}{2}, \frac{\pi}{2})$, el rango es [-1, 1].

2/21/2018

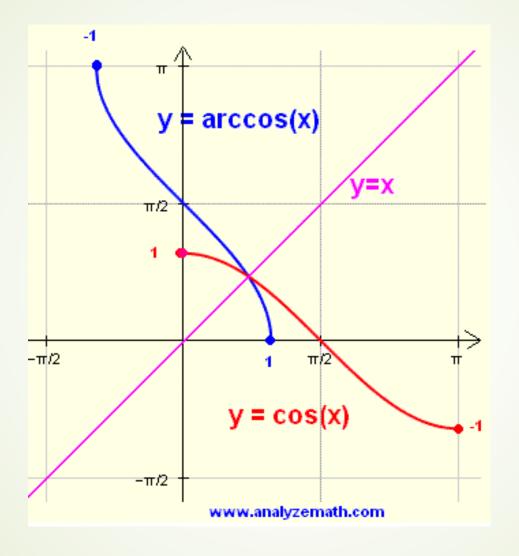


Denotamos la <u>función inversa</u> como $y = \sin^{-1} x$. Se lee y es la inversa del seno de x y significa que y es el <u>ángulo</u> de <u>número real cuyo valor de seno es x</u>. Pero tenga cuidado con la notación usada. El superíndice " $^{-1}$ " NO es un exponente. Para evitar esta notación, algunos libros usan $y = \arcsin x$ como notación



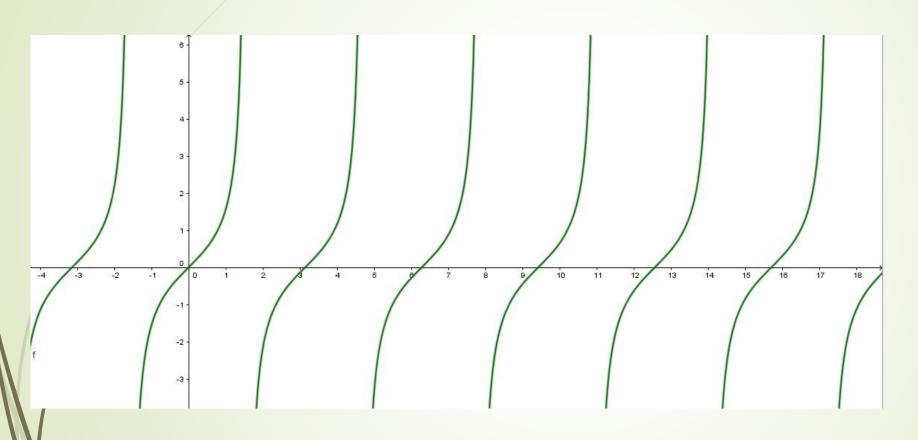


Similarmente, podemos restringir los dominios de las funciones coseno para hacerlas 1-a-1 y a partir de ahí, obtener las funciones *arc* cos *x*



41

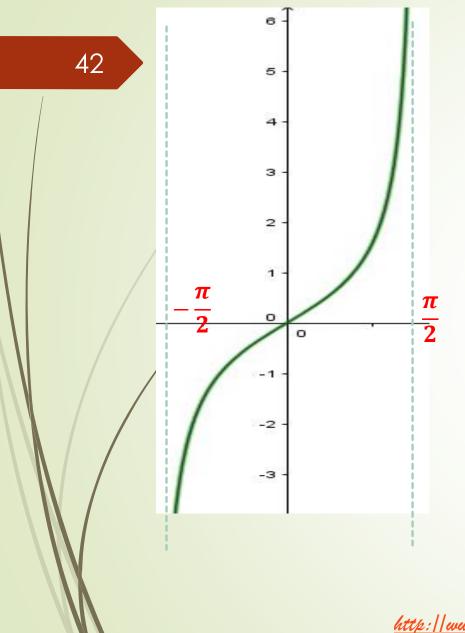
Gráfica de $y = \tan x$

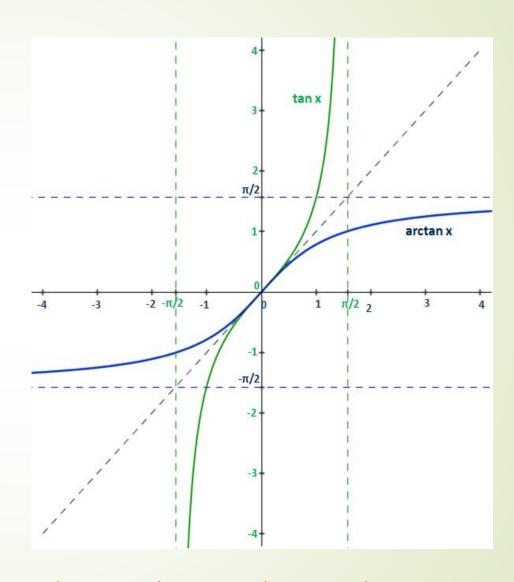


D: reales $\neq (\frac{\pi}{2} + n\pi)$

 $R:(-\infty,\infty)$

http://funcionesvalery.blogspot.com.co/2015/11/





Función	Dominio	Rango
sin ⁻¹ x	[-1, 1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
cos ⁻¹ x	[-1, 1]	[0, π]
tan ⁻¹ x	(-∞, ∞)	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
cot ⁻¹ x	(-∞, ∞)	(0, π)
sec ⁻¹ x	(-∞, ∞)	$\left[0,\frac{\pi}{2}\right) \cup \left(\frac{\pi}{2},\pi\right]$
csc ⁻¹ x	(-∞, ∞)	$\left[-\frac{\pi}{2}, 0\right) \cup \left(0, \frac{\pi}{2}\right]$

El dominio de la función tangente inversa es $(-\infty, \infty)$ y el rango es $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. La inversa de la función tangente arrojará valores en los cuadrantes 1 ^{er} y 4 ^{to}.

El mismo proceso es usado para encontrar las funciones inversas de las funciones trigonométricas restantes-cotangente, secante y cosecante.